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The turbulent dynamics of anticyclonic submesoscale headland wakes
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ABSTRACT: Flow interacting with bathymetry has been posited to be important for dissipation and mixing in the global ocean. Despite
this, there are large uncertainties regarding mixing in these environments, particularly as it pertains to the role of submesoscale structures
in the dynamics and energetics. In this work we study such flows with a series of Large-Eddy simulations of a submesoscale flow past
a headland where the turbulence is resolved, allowing us to probe into the small-scale processes responsible for the energy cascade. One
key finding is that the kinetic energy (KE) dissipation rate, buoyancy mixing rate, and eddy diffusivity of the flow organize as linear
functions of the bulk Rossby and Froude numbers across all simulations, despite very different dynamical regimes. The slope Burger
number (Rossby over Froude number) was found to be particularly useful as it can organize aspects of both the dynamics and energetics.
Moreover, comparison of KE dissipation rates with previous works suggests an underestimation of dissipation rates by regional models of
up to an order of magnitude, with potential implications for global energy budgets. Consistent with hypotheses from previous studies, but
resolved here for the first time up to small scales, we find evidence of submesoscale centrifugal-symmetric instabilities (CSIs) in the wake
leading to a forward energy cascade. However, given that dissipation and mixing rates seem to follow the same scaling across regimes with
and without CSIs, their effect on flow energetics here differs from what has been observed in the upper ocean, where CSI turbulence seems
to follow a different scaling from their non-CSI counterparts.

1. Introduction

Coastal bathymetric features shape near-shore ocean cir-
culations and directly impact physical and biological pro-
cesses unique to these areas, such as dispersion of nutrients,
dissolved pollutants, floating organisms, and sediment (St
John and Pond 1992; Wang et al. 1999; Bastos et al. 2003;
Nencioli et al. 2011; Ben Hamza et al. 2015). Importantly
for the present study, as sites of flow-bathymetry interac-
tions, they also tend to be locations of intensive turbulence
generation (Jalali and Sarkar 2017; Johnston et al. 2019;
Capó et al. 2023; Radko 2023; Mashayek 2023; Whitley
and Wenegrat 2024), leading to elevated rates of kinetic
energy (KE) dissipation and buoyancy mixing (Munk and
Wunsch 1998; Nikurashin and Ferrari 2011; Melet et al.
2013; McDougall and Ferrari 2017; Polzin and McDougall
2022). This mixing can be generated through a variety of
dynamical processes (reviewed further below) and have
been shown to impact large-scale budgets (Polzin et al.
1997; Ledwell et al. 2000; Scott et al. 2011; Nikurashin and
Ferrari 2011; Brearley et al. 2013; Zemskova and Grisouard
2021; Evans et al. 2022). Given that mixing and dissipa-
tion patterns directly affect the transport of heat, freshwa-
ter, dissolved gases and other tracers in the global ocean,
as well as upwelling in the deep branches of the abyssal
circulation (De Lavergne et al. 2016; Ferrari et al. 2016;
MacKinnon et al. 2017; Polzin and McDougall 2022), an
understanding of these processes is necessary to fully grasp
global ocean dynamics.

While a significant portion of the energy that is dis-
sipated over rough bathymetry is transferred from larger
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scales to turbulence through drag, wave generation, and
subsequent wave breaking (Waterhouse et al. 2014; Kly-
mak 2018; Klymak et al. 2021; Zemskova and Grisouard
2022; Ding et al. 2022), there is increasing evidence that
these sites often generate submesoscale structures (Chen
et al. 2015; Molemaker et al. 2015; Srinivasan et al. 2019,
2021; Nagai et al. 2021). These structures can provide new
pathways to energy dissipation through small-scale turbu-
lence and substantially modify the mixing and dissipation
rates of the flow (Wenegrat and Thomas 2020; Spingys
et al. 2021; Chor et al. 2022), with potential large-scale
consequences for the ocean circulation. As an example,
Gula et al. (2016) estimated that, of the approximately 0.8
terawatts of work exerted by the winds on the ocean, up
to 0.1 terawatts may be dissipated in submesoscale bathy-
metric wakes.

Unfortunately, parameterizations of both traditional tur-
bulent cascades and submesoscale-mediated energy trans-
fers are limited when it comes to estimating mixing and
dissipation rates (Pope 2000; Bachman et al. 2017; Chor
et al. 2021). Therefore, these effects are likely not well
represented in previous numerical investigations of flow-
topography interactions, which have almost exclusively re-
lied on regional models1 (Magaldi et al. 2008; Perfect et al.
2018; Srinivasan et al. 2019; Perfect et al. 2020b; Srini-
vasan et al. 2021). Moreover, the scale of the relevant
turbulent structures, and the fact that mixing is primarily
driven by relatively small and sparsely located regions of
vigorous activity, make experimental investigations diffi-

1Exceptions that resolve turbulent dynamics in similar configurations
are the line of papers by Puthan et al. (2020), which focuses on different
processes than those investigated here.
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cult (Munk and Wunsch 1998; McWilliams 2016). As
a consequence, the contribution of flow-bathymetry inter-
actions remains a source of uncertainty in global energy
budgets (Ferrari and Wunsch 2009).

The broad goal of this study is to shed light onto some
of aforementioned points. Namely, we focus on the small-
scale dynamics (i.e. turbulence) and energetics of flow
interacting with headlands, with the expectation that some
of the findings may also apply to more general bathymetric
obstacles. In addition to the important role played by small-
scale turbulence in mixing and dissipating, previous work
has showed that they may be necessary to realistically rep-
resent the evolution of submesoscale instabilities and KE
energy cascades (Jalali and Sarkar 2017; Chor et al. 2022),
prompting us to employ Large-Eddy Simulations (LES)
as the tool of choice. LES resolve the relevant turbulent
scales responsible for the forward KE cascade (Chamecki
et al. 2019), allowing us to probe into processes that were
absent in most previous investigations of this topic, which
parameterized turbulence effects in a Reynolds-averaged
Navier-Stokes (RANS) sense.

The paper is organized as follows. In Section 2 we intro-
duce the necessary theoretical background and details of
our LES model and simulations. We start with an overview
of the parameter-space and dynamical regimes in Section 3
and then move on to investigate their bulk properties in Sec-
tion 4. We focus on the submesoscale dynamics observed
in some of the parameter space in Section 5, specifically
centrifugal-symmetric instabilities. We discuss our results
in a broader context in Section 6 and make final remarks
in Section 7.

2. Problem set-up

a. Theoretical background

We study the problem of a constant barotropic flow in-
teracting with a headland-like topographic obstacle, as de-
picted in Figure 1 (details about the geometry are given
in Section 2b). We chose to focus on an anticyclonic in-
teraction since, on average, it generates negative potential
vorticity (Gula et al. 2016) and hence it is expected to be
more unstable to submesoscale instabilities (see Section
5), but also show results for its cyclonic counterpart when-
ever relevant. In order to make the numerics tractable, we
use a relatively small domain and assume dynamic simi-
larity, matching relevant nondimensional parameters with
representative values for the real ocean. We also assume
that we reach a sufficiently-high Reynolds number such
that the flow dynamics are self-similar (i.e. scaling up
the simulation grid in size while keeping all dimensionless
numbers constant would produce the same result). One
consequence of this is that the (attached) bottom bound-
ary layer (BBL) thicknesses need to be much smaller than
the size of the obstacle. In the present case, the BBL
is smaller than 10 meters on average in all simulations,

which, relative to the 80 meters tall headland, is consistent
with observed flow-topography interactions (Nagai et al.
2021). Note also that experimentation with different val-
ues of roughness length scale for the bathymetry bottom
drag (which directly affects the BBL thickness) produced
virtually identical results (see details about the boundary
conditions in Section 2b). Thus, we ignore differences re-
lated to the finite Reynolds number and roughness length
scale (consistent with previous investigations (Jalali and
Sarkar 2017; Perfect et al. 2018)).

The relevant dimensional parameters for the configura-
tion are then the headland horizontal and vertical length
scales 𝐿 and 𝐻, the Brunt-Väisälä frequency far from the
obstacle 𝑁∞, the Coriolis frequency 𝑓 , and the velocity of
the upstream barotropic flow𝑉∞ (see Table 1 for the values
used). This allows us to form the relevant nondimensional
parameters defining the parameter space for our set-up:
the headland Rossby number, headland Froude number,
and bulk headland slope, respectively

𝑅𝑜ℎ =
𝑉∞
𝐿 𝑓

, (1)

𝐹𝑟ℎ =
𝑉∞
𝐻𝑁∞

, (2)

𝛼 =
𝐻

𝐿
. (3)

We also define the headland Slope Burger number 𝑆ℎ =
𝛼𝑁∞/ 𝑓 which in our configuration can be written as

𝑆ℎ =
𝑁∞𝐻

𝑓 𝐿
=
𝑅𝑜ℎ

𝐹𝑟ℎ
. (4)

𝑆ℎ captures the competition between the vertical decou-
pling effect of stratification and vertical organization ef-
fects of rotation, and is expected to predict dynamical fea-
tures of the flow such as wake separation (Magaldi et al.
2008) and vertical coupling of vortices (Perfect et al. 2018;
Srinivasan et al. 2019). Note that 𝑆ℎ is equivalent to the
square root of the Burger number as defined in some previ-
ous investigations (Magaldi et al. 2008; Perfect et al. 2018,
2020a).

Note that there are dynamical similarities between flows
past headlands and the more recently-studied problem of
flows past seamounts, and indeed we find that several be-
haviors observed in previous seamount studies qualitatively
apply here (Perfect et al. 2018; Srinivasan et al. 2019; Per-
fect et al. 2020a), although there are also important dif-
ferences (see Section 3). In particular, the presence of an
east (positive 𝑥 direction) wall makes it easier for flow to
follow bathymetry and imposes a no-flow boundary condi-
tion. The latter not only makes the headland an inherently
asymmetric problem, but may also significantly change the
form drag compared to a seamount, which dominates over



3

Fig. 1. Snapshot of Ertel Potential Vorticity in one of the simulations (𝑅𝑜ℎ = 1.25 and 𝐹𝑟ℎ = 0.08) used in this paper. The inset shows a
schematic of the configuration: a flow with initially-constant velocity upstream interacting with a headland, leading to a submesoscale wake. Here,
West/East corresponds to the negative/positive 𝑥 direction, and South/North corresponds to the negative/positive 𝑦 direction An animated version
of this figure can be found in the supplemental material.

skin drag in similar configurations (Edwards et al. 2004;
Magaldi et al. 2008).

b. Numerical set-up

We use the Julia package Oceananigans (Ramadhan et al.
2020) to run a series of Large-Eddy simulations (LES),
which are performed by solving the filtered nonhydrostatic
incompressible Boussinesq equations

𝜕 ®𝑢
𝜕𝑡

+ ®𝑢 · ∇®𝑢 + 𝑓 ®̂𝑘 × ®𝑢 = −∇𝑝− 𝑓 𝑉∞®̂𝚤 + 𝑏 ®̂𝑘 −∇ · ®𝜏, (5)

𝜕𝑏

𝜕𝑡
+ ®𝑢 · ∇𝑏 = −∇ · ®𝜆, (6)

where ®̂𝚤 and ®̂𝑘 are the unit vectors in the cross-stream
(𝑥) and vertical (𝑧) directions, ®𝑢 = (𝑢,𝜐,𝑤) is the three-
dimensional velocity vector, 𝑏 is the buoyancy, 𝑝 is the
modified kinematic pressure (Chamecki et al. 2019), ®𝜏 is
the subgrid-scale (SGS) stress tensor, and ®𝜆 is the SGS
buoyancy flux. The term 𝑓 𝑉∞®̂𝚤 is a geostrophic pressure
gradient force. For all simulations in this work, ®𝜏 and ®𝜆 are

modeled using a constant-coefficient Smagorinsky-Lilly
closure (Lilly 1962; Smagorinsky 1963), and we mention
that tests with the Anisotropic Minimum Dissipation clo-
sure (Rozema et al. 2015; Vreugdenhil and Taylor 2018)
produced similar results.

Oceananigans solves these equations using a finite vol-
ume discretization, and we use a 5th-order Weighted Essen-
tially Non-Oscillatory advection scheme and a 3rd-order
Runge-Kutta time-stepping method. The grid spacing is
approximately 0.6 meters vertically and 2 meters in the
streamwise (𝑦) direction. For the 𝑥 spacing, we hold
the spacing approximately constant at 1.6 meters in the
headland region (𝑥 ⪆ −200) and progressively stretch it to
around 16 meters at the west (negative 𝑥 direction) wall.
The upstream velocity, domain geometry, and bathymetry
are held constant throughout all simulations.

The simulations aim to represent a constant-velocity,
barotropic flow interacting with a headland, as depicted
in Figure 1, which produces anticyclonic vorticity — a
common feature along coastlines (Molemaker et al. 2015;
Gula et al. 2016). To achieve that, all simulations are
bounded in the 𝑥 and 𝑧 directions, and periodic in the 𝑦
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Fig. 2. 𝑅𝑜ℎ-𝐹𝑟ℎ parameter-space considered in this work where
each point corresponds to a different simulation. Points are color- and
shape-coded according to their regime. Background colors indicate
equivalent Slope Burger number 𝑆ℎ . Simulations circled in red are
shown in Figures 3 to 5.

(downstream) direction. The simulation is initialized with
a uniform 𝑦-direction velocity𝑉∞ = 0.01 m/s and a uniform
stratification 𝑁2

∞. The first 300 meters of the domain in
the (periodic) 𝑦 direction nudge the flow back to 𝑢 = 𝑤 = 0,
𝜐 =𝑉∞, 𝑏 = 𝑁2

∞𝑧, making the 𝑦 direction act like an inflow
boundary condition upstream from the headland and an
open boundary condition downstream from it. Due to
computational constraints, we keep the topographic slope
𝛼 = 0.2 constant throughout all simulations and explore
the parameter space (depicted in Figure 2) by changing
the Coriolis frequency 𝑓 and the stratification 𝑁2

∞ in each
simulation, therefore varying 𝑅𝑜ℎ and 𝐹𝑟ℎ. Note that a
slope of 𝛼 = 0.2, although considered steep in an ocean
context, is still found in both seamounts (see data by Kim
and Wessel (2011)) and coastal features (e.g. the California
coast (Dewar et al. 2015)).

The headland is idealized as the following geometry:

𝜂(𝑧) = 2𝐿
(
1− 𝑧

2𝐻

)
, (7)

ℎ(𝑦, 𝑧) = 2𝐿−𝜂(𝑧) exp

[
−

(
2𝑦
𝜂(𝑧)

)2
]
, (8)

such that the interior of the headland is defined as locations
where 𝑥 > ℎ(𝑦, 𝑧). Equation (8), along with the parameters
listed in Table 1, results in the geometry depicted in Figure
1 (the nudging layer is not shown). Note that we span a
wide range of Slope Burger number values, including up to
𝑆ℎ ≈ 15, which is somewhat higher than generally found in
oceanic surveys (Lentz and Chapman 2004), but consistent
with prior numerical work (Perfect et al. 2020a; Srinivasan
et al. 2019), and can thus be interpreted as an upper bound
for ocean values.

The boundary conditions for buoyancy in 𝑥 and 𝑧 are
that of zero flux. The momentum boundary conditions are
free-slip at the top and bottom and on the west and east
walls, but follow a quadratic log-law at the bathymetry im-
plemented according to Kleissl et al. (2006), leading to a
quadratic drag coefficient of 0.12. Note that we have ex-
perimented with different boundary conditions for the east
wall and bathymetry, and found that they do not signifi-
cantly affect our results2, most likely due to a dominance of
the baroclinic torque term in generating vorticity (Puthan
et al. 2020). Thus we chose to use no-flux conditions to
avoid introducing shears from a vertical wall into the flow
given that vertical walls are extremely rare in the ocean.

The bathymetry in our simulations is represented nu-
merically using a full-step immersed boundary method and
it was verified to produce virtually identical results to the
partial-step method (Adcroft et al. 1997) for the resolutions
used in this paper. That said, given that the slopes at the
grid-scale are not preserved with this implementation, we
exclude the first few points adjacent to the topography from
analyses, focusing instead on the interior outside of the bot-
tom boundary layer. Results were found to be numerically
converged by Ozmidov scale analysis and auxiliary runs
with different domain dimensions and spacings (see Ap-
pendix A1). All simulations are allowed to spin-up for 20
advective periods (defined as 𝑇 = 𝐿/𝑉∞), and all analyses
are done in the subsequent 50𝑇 period.
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Lx 1200 m
Ly 3000 m
Lz 84 m
Upstream velocity (𝑉∞) 1 cm/s
Roughness length scale (𝑧0) 10 cm
Nudging layer length 300 m
Nudging rate at reentry 0.001 1/s
Headland horizontal length scale (𝐿) 200 m
Headland vertical length scale (𝐻) 40 m
Headland slope (𝛼) 0.2
Headland Rossby number (𝑅𝑜ℎ = 𝑉∞/ 𝑓 𝐿) [0.08, 0.2, 0.5, 1.25]
Headland Froude number (𝐹𝑟ℎ = 𝑉∞/𝑁∞𝐻) [0.08, 0.2, 0.5, 1.25]
Headland Slope Burger number (𝑆ℎ = 𝑅𝑜ℎ/𝐹𝑟ℎ) [0.064, 0.16, 0.4, 1, 2.5, 6.25, 15.625]
f-plane frequency ( 𝑓 ) [6.25, 2.5, 1, 0.4] ×10−4 1/s
Buoyancy frequency at the inflow (𝑁∞) [3.125, 1.25 , 0.5 , 0.2] ×10−3 1/s

Table 1. Parameters for the simulations used in this work.

3. Overview of dynamics

As a high-level description, in all cases the interaction
with the headland creates anticyclonic vorticity and turbu-
lence, which can be seen in Figure 3 for four simulations.
Note that the approximate minima of the anticyclonic vor-
ticity in the wake coincides with about 5 to 10 times the
value of 𝑅𝑜ℎ, putting the values of 𝑅𝑜ℎ considered here
in the submesoscale range for most simulations. Although
the aforementioned description is valid for all simulations,
Figure 3 also shows that the flow behavior after the initial
topographic interaction can be very different for different
simulations, indicating the existence of different dynamical
regimes.

We identified four such regimes within our simulations
and we show one representative case for each in Figures 3–
6. We find that 𝑆ℎ is a useful quantity to predict dynamical
regime changes, and the regimes we find are generally con-
sistent with comparable ones described in previous head-
land literature (Magaldi et al. 2008) — apart from details of
small-scale turbulence that were not previously resolved.
We describe all regimes below, although we make no at-
tempt to fully quantify the precise critical values of 𝑆ℎ
at which transitions happens, as it is not in our scope and
would require many more simulations. The four simulation
regimes can roughly be described as:

• Bathymetry-following regime: For small 𝑆ℎ (Figure
3d) we tend to not observe any wake separation, and
the flow mainly follows the bathymetry, similar to
quasi-geostrophic dynamics (Pedlosky 1987). In this

2While Puthan et al. (2020) found that dynamics can be sensitive to
bottom boundary conditions, we found that our results were unchanged
as long as the bathymetry had a quadratic drag law. This includes changes
to the roughness length, which did not significantly affect results when
values were between O(0.1) and O(1) meters (values outside this range
were not tested). We have not tested no-slip boundary conditions as the
LES technique implies viscous layers that are much smaller than the grid
scale, making such a boundary condition inappropriate for our case.

regime the transition to turbulence is done by small-
scale eddies in the bottom boundary layer likely cre-
ated through a combination of boundary layer shear,
downslope bottom flow due to Ekman transport, and
boundary-layer-scale CSIs (MacCready and Rhines
1991; Wenegrat and Thomas 2020). In this regime we
also observe evidence of internal waves (not shown),
which have not been observed to break in any of the
cases we simulated and therefore act to transfer energy
out of the domain.

• Vertically-coupled eddying regime: For flows with
intermediate 𝑆ℎ values and 𝑅𝑜ℎ ≈ 𝐹𝑟ℎ ⪅ 0.2, eddies
form at the tip of the bathymetry and occasionally
drift away as isolated features, as seen in Figure 3c.
These eddies are mostly vertically-coupled (i.e. low
vertical shear; Perfect et al. (2018)) as can be seen in
Figure 4c, and quickly adjust the PV signature3 from
negative at the headland tip to zero in the vortices
(Figure 5c). In addition to boundary-layer eddies, we
show that CSIs likely play a role in the wake dynamics
in simulations in this regime with high enough 𝑅𝑜ℎ
(see Section 5).

• Vertically-decoupled eddying regime: For larger val-
ues of 𝑆ℎ (Figure 3a) there tends to be a clear vorti-
cal wake, often (for large enough 𝑅𝑜ℎ) maintaining
a negative-PV signature long downstream from the
headland tip. Although it is apparent that the magni-
tude of the negative PV signal decreases as the flow
moves downstream from the headland tip, which we
show in Section 5 to be due to CSIs (see Figure 5a).
Furthermore, there is evidence of substantial upscale
energy cascade, resulting in wake vortices that are

3Whenever appropriate, the Ertel potential vorticity (PV) used in
the calculations follows the filtering procedure proposed by Bodner and
Fox-Kemper (2020) using a filter scale of 15 m (although we observed
the results to not be sensitive to the precise choice of scale).
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Fig. 3. Horizontal cross-sections of pointwise Rossby number 𝑅𝑜 divided by 𝑅𝑜ℎ at mid-depth for four selected simulations (corresponding to
points with red circles in Figure 2), each representative of a different regime. The shaded grey area corresponds to the headland and the mean flow
(𝑉∞ = 0.01 m/s) is directed northward (i.e. positive 𝑦 direction). An animated version of this figure can be found in the supplemental material.

significantly larger in size in comparison to the head-
land dimensions. Importantly for this regime, the
decoupling of vertical levels due to stratification ef-
fects creates significant vertical shear (see Figure 4a;
Perfect et al. (2018)).

• Small-scale turbulence regime: If both rotation and
stratification are weak (i.e. 𝑅𝑜ℎ ⪆ 0.5 and 𝐹𝑟ℎ ⪆ 0.5),
the flow produces a wake without any discernible roll-

up or dynamical structures at the scale of the head-
land or larger, suggesting the absence of any kind of
upscale energy cascade. The wake is then charac-
terized by small-scale turbulence features as seen in
Figures 3b and 5b. Investigations of this regime are
more common in the atmospheric sciences literature
(Belcher and Hunt 1998; Finnigan et al. 2020).
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Fig. 4. Vertical cross-sections of 𝑢-direction vertical shear at approximately 𝑥 ≈ 245 m for the same four simulations shown in Figure 3. The flow
is moving from left to right in the panels.

Note that in addition to submesoscale flows, the parame-
ter space range explored here also produces flow behaviors
qualitatively similar to mesoscale (e.g. the bathymetry-
following regime) and small-scale flows (small-scale tur-
bulence regime). This wide range of regimes ensures that
several routes from mean flow to turbulence are present
in our simulations. We also note that, similarly to our
configuration, 𝑆ℎ can predict the transition between a
vertically-coupled and vertically-decoupled regime for iso-
lated seamounts (Perfect et al. 2018; Srinivasan et al. 2019)
despite the difference in geometry.

As a point of comparison, we can connect our results to
those of Gula et al. (2016), who modeled a more realis-
tic headland system using the Regional Oceanic Modeling
System (ROMS (Shchepetkin and McWilliams 2005)). Fo-
cusing on the headland at the Great Bahama Bank (at the
southwestern corner of their Figure 2), we can use their
figures along with topography data to estimate: 𝐿 ≈ 6
km, 𝐻 ≈ 400 m, 𝑁2

∞ ≈ 10−4 1/s2, 𝑓 ≈ 6.6 × 10−5 1/s,
𝑉∞ ≈ 1 m/s. These values indicate that, for their head-
land, 𝑅𝑜ℎ ≈ 2, 𝐹𝑟ℎ ≈ 0.2, being therefore in the vertically-
decoupled eddying regime (albeit with a shallower bulk
slope than the one used here). Comparing our Figure 3a
(𝑅𝑜ℎ = 1.25, 𝐹𝑟ℎ = 0.2) with their Figure 1b, we see a
similar downstream eddy roll-up, with our simulation ex-
pectedly resolving the vertical vorticity at much smaller
scales, accordingly reaching larger magnitudes of 𝑅𝑜. The
difference in the PV signature seen at different depths in

their Figure 2 also indicates vertical decoupling of layers,
which again is in line with expectations from the present
work. These agreements suggest that the dynamics ob-
tained in our idealized headland model are representative
of dynamics obtained with realistic topography.

Finally, although the range of parameter space consid-
ered in this study is large, one can anticipate other regimes
may happen that are not present here. For example for high
enough 𝑅𝑜ℎ the growth rate of CSIs (see Section 5) will
be slow compared to other shear instabilities in the flow
(Haine and Marshall 1998), while for low enough 𝑅𝑜ℎ the
drag exerted by the headland may not be enough to produce
a negative PV signature at all in the flow. Both cases may
result in different dynamics from the ones described here.
However we believe the parameter space spanned here (Ta-
ble 1) encompasses most oceanographically-relevant val-
ues.

A useful way to visualize turbulent flow is to focus on
the Kinetic Energy (KE) dissipation rate

𝜀𝑘 = 2𝜈𝑆𝑖 𝑗𝑆𝑖 𝑗 , (9)

where 𝜈 is the subgrid scale viscosity and 𝑆𝑖 𝑗 = (𝜕𝑢𝑖/𝜕𝑥 𝑗 +
𝜕𝑢 𝑗/𝜕𝑥 𝑗 )/2 is the strain rate tensor. Time-averages (indi-
cated throughout as ·̄) of 𝜀𝑘 are shown in Figure 6. The dif-
ference in distribution of 𝜀𝑘 between simulations is clear,
with some simulations dissipating KE only in the bound-
ary layer attached to the bathymetry (specifically simula-
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Fig. 5. Same as in Figure 3 but showing filtered Ertel PV ( ®∇𝑏̃ · ( ®∇ × ®̃𝑢 + 𝑓 ®̂𝑘 )) normalized by 𝑁2
∞ 𝑓 , where ®̂𝑘 is the unit vector in the vertical

direction and ·̃ indicates a horizontal filtering operation at the scale of 15 meters.

tions in the terrain-following regime, exemplified in Figure
6d), while other simulations dissipate most of their KE in
the wake (as is the case for simulations in the vertically-
decoupled eddying regime, exemplified in Figure 6a). We
can further inspect results by averaging4 𝜀𝑘 in the vertical

4Note that, as mentioned in the text, when integrating or averaging
results spatially, we ignore points that are within approximately 5 meters
from the headland. This is done in order to avoid contamination of the
results with unresolved dynamics, since these points are numerically
affected by the wall model and the immersed boundary discretization.

and cross-stream directions (⟨𝜀𝑘⟩𝑥𝑧) for all simulations,
which is shown in Figure 7a (each curve corresponds to
a different simulation and they are color-coded based on
𝑆ℎ). Figure 7a makes it clear that the wake turbulence
becomes progressively more important for the overall dis-
sipation with increasing values of 𝑆ℎ, which is expected
based on the increasingly important role of stratification
(Srinivasan et al. 2019, their Figure 15e). While the posi-
tion of the secondary peak in KE dissipation downstream
from the headland (in 𝑆ℎ ⪆ 1 simulations) is likely affected



9

250

0

250

500

750

1000

1250

1500

y 
[m

]

Frh =  0.2

(a)
Sh = 6.25

Frh =  1.25

(b)
Sh = 1

100 0 100 200 300 400
x [m]

250

0

250

500

750

1000

1250

1500

y 
[m

]

(c)
Sh = 1

100 0 100 200 300 400
x [m]

(d)
Sh = 0.16

Ro
h

=
 1

.2
5

Ro
h

=
 0

.2

10 10

10 9

Ti
m

e-
av

er
ag

ed
 K

E 
di

ss
ip

at
io

n 
ra

te
 

k [
m

²/s
³]

Fig. 6. Same as in Figure 3 but showing the time-averaged KE dissipation rate 𝜀̄𝑘 .

by CSI dynamics, it results primarily from the wake roll-up

in these simulations. This can be seen by comparing, for

example, the location of peak dissipation for simulations

with 𝑆ℎ ≈ 6.25 (𝑦 ≈ 500 m) with the location in Figure 7a

where the turbulent wake is the widest (also 𝑦 ≈ 500 m),

and likewise for other simulations.

We can perform a similar quantification for the buoyancy
mixing rate 𝜀𝑝 , which we approximate as

𝜀𝑝 = 𝜅𝑏
®∇𝑏 · ®∇𝑏
𝑁2
∞

, (10)

where 𝜅𝑏 is the subgrid scale diffusivity using a Prandtl
number of unity. In previous tests by the authors (using a
similar domain but without a nudging layer or boundary
fluxes) Equation (10) proved to be a good approximation of
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Fig. 7. Panel a: 𝑥, 𝑧, and time averages of KE dissipation rate as a
function of downstream distance 𝑦 for all simulations. Panel b: same
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its respective simulation’s headland Slope Burger number 𝑆ℎ . Note that
the 5 meters closest to the headland are excluded in this average in order
to avoid potential contamination of results by the immersed boundary
discretization.

the exact equation for the buoyancy mixing rate, which uses
the stratification of the sorted buoyancy field (see Winters
et al. (1995); Umlauf et al. (2015) for details). Figure 7b
shows the 𝑥-, 𝑧- and time-averaged buoyancy mixing rate as
a function of downstream distance. The similarity with the
KE dissipation rate curves in Figure 7a is clear, although
𝜀𝑝 values are smaller by a factor of approximately 5, indi-
cating a mixing efficiency of 𝛾 = 𝜀𝑝/(𝜀𝑘 +𝜀𝑝) ≈ 0.2 that is
roughly constant throughout the wake (except very close to
the bathymetry) — in accordance with standard values for
𝛾 (Gregg et al. 2018; Caulfield 2021). We note the elevated
mixing rate in the wake differs from the behavior proposed
by Armi (1978), who suggested that mixing happens only
along boundaries and well-mixed waters were transported
into the interior. In all our simulations with eddying wakes,
a non-negligible amount of mixing happens after the flow
detaches from the boundary.

4. Energetics and bulk results

Understanding the influence of stratification and rotation
on bulk quantities can aid both future parameterization
efforts and attempts at global energy budgets. Therefore
we dedicate this section to investigating bulk quantities in
our simulations with a focus on flow energetics. In order to
make our results easily scalable, we normalize them here
using the external scales for velocity and length: 𝑉∞ and 𝐿.
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Fig. 8. Normalized volume-integrated, time-averaged quantities as a
function of Slope Burger number 𝑆ℎ . Points are color- and shape-coded
as in Figure 2. Panel a: KE dissipation mixing rate. Panel b: Form
drag work (Equation (12)). Black and gray dashed lines are shown as
references for ∼ 𝑆ℎ .

This normalization was found to be accurate by re-running
all simulations in this paper with different values of 𝑉∞
and observing that the normalized results remained largely
unchanged.

We start by investigating the volume-integrated, time-
averaged normalized KE dissipation rate

E𝑘 =
∭

𝜀𝑘𝑑𝑥𝑑𝑦𝑑𝑧

𝑉3
∞𝐿𝐻

, (11)

where the normalization comes from assuming 𝜀𝑘 ∼𝑉3
∞/𝐿

and
∭

(·)𝑑𝑥𝑑𝑦𝑑𝑧 ∼ 𝐿2𝐻, and results are shown as a func-
tion of the Slope Burger number 𝑆ℎ in Figure 8a. Each
point corresponds to a different simulation, and the or-
ganization as a linear function of 𝑆ℎ (shown as a dashed
line for reference) is striking. These results, for simula-
tions spanning a range of different dynamical regimes and
physical processes generating cross-scale energy transfers
(see Section 3), indicate that the bulk effects of small-scale
turbulence seem to follow a general relationship regard-
less of specific regimes, suggesting that the details of the
dynamical routes to turbulence may not be critical to de-
termining the bulk turbulent energetics. Such a conclusion
is different from the picture that has emerged based on
upper-ocean investigations, where the flow dynamics and
routes to turbulence seem to significantly impact energetics
(see Section 7 for a discussion). However, results consis-
tent with ours, although not interpreted in this way, can be
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found in previous work on flow-bathymetry interactions.
Specifically, Srinivasan et al. (2019) reported that 𝜀𝑘 is in-
versely correlated with Froude number and Srinivasan et al.
(2021) reported it being correlated with Rossby number.

A complete analysis of the turbulent kinetic energy
(TKE) budget across simulations spanning such a wide
range of regimes, leading to a full explanation for the re-
lationship seen in Figure 8a, is outside the scope of this
work. However we note that such an organization may be
partly explained by the internal form drag, which captures
effects of lee waves and eddies that are formed and shed
from bathymetry (Magaldi et al. 2008, Section 3.3). Form
drag is important for flows impinging on obstacles (Mc-
Cabe et al. 2006; Warner and MacCready 2009, 2014) and,
although it does not exert work on the fluid as a whole (Gill
1982; MacCready et al. 2003), it represents a transfer of
energy from the barotropic flow into baroclinic flow, which
subsequently can be a source of TKE and dissipation. We
calculate the normalized integrated form drag work D as
(Warner and MacCready 2014)

D = − 1
𝑉3
∞𝐿𝐻

𝑉∞

∬
𝑝𝑏𝜕𝑦ℎ 𝑑𝑥𝑑𝑦, (12)

where 𝑝𝑏 is the time-averaged kinematic pressure at the
bottom and 𝜕𝑦ℎ is the alongstream bathymetry slope. D
is shown in Figure 8b, and it is apparent that, for most of
the parameter space, the drag work also organizes approx-
imately linearly with 𝑆ℎ. A reasonable hypothesis based
on these results is that the overall pattern of organization
of 𝜀𝑘 with 𝑆ℎ stems from the approximately linear rela-
tionship between drag work and 𝑆ℎ, indicating an energy
transfer from the barotropic flow into dissipation (such that
𝜀𝑘 ≈ 0.1D for most simulations based on Figure 8).

However, we also note that the form drag work, D, levels
out for high values of the slope Burger number 𝑆ℎ (particu-
larly in the vertically-decoupled eddying regime, depicted
as magenta diamonds). While this is qualitatively con-
sistent with previous work on form drag (see for example
Equation (68) of Teixeira (2014) and Figure 12 of Magaldi
et al. (2008)), it does not happen for E𝑘 , indicating that the
increasing trend for dissipation at large 𝑆ℎ seen in Figure 8a
may not be fully attributable to a simple increase in D. In
fact, throughout our simulations, we find that advection of
KE, buoyancy fluxes, pressure transport, and geostrophic
pressure work are all important, signaling that a complete
explanation of the trend for E𝑘 likely involves a complex
interaction between all these processes.

A linear organization with 𝑆ℎ is also observed for the
normalized buoyancy mixing rates E𝑝 (defined similarly
to Equation (11)) in Figure 9a. Consistent with Figure 7,
values of E𝑝 are smaller than E𝑘 by approximately fivefold,
and the similarity between both results and the connection
between the two processes suggests that both trends have
a common explanation. Additionally, if one uses 𝜀𝑝 to
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Fig. 9. Panel a: Normalized, volume-integrated, time-averaged buoy-
ancy mixing rate. Panel b: Normalized diffusivity (calculated as in
Equation (13)) as a function of 𝑅𝑜ℎ𝐹𝑟ℎ . Dashed back line is the same
as in Figure 8a, and gray lines are shown for reference. Points are color-
and shape-coded as in Figure 2.

define a buoyancy diffusivity, in such a way that it can be
written in normalized form as

K𝑏 =
1

𝑉∞𝐿3𝐻

∭
𝜀𝑝 𝑑𝑥𝑑𝑦𝑑𝑧

𝑁2
∞

, (13)

then the linear scaling of 𝜀𝑝 with 𝑆ℎ implies

K𝑏 ∼ 𝑅𝑜ℎ𝐹𝑟ℎ . (14)

Note that in deriving Equation (13) we assume a scaling
for the diffusivity of 𝑉∞𝐿 and the choice of 𝜀𝑝 guarantees
that only irreversible processes are considered. Results for
K𝑏, can be seen in Figure 9b as a function of 𝑅𝑜ℎ𝐹𝑟ℎ,
where the scaling of Equation (14) is confirmed. This
result contrasts with the steeper scaling found by Perfect
et al. (2020a) of K𝑏 ∼ (𝑅𝑜ℎ𝐹𝑟ℎ)2, and is more in line with
the recent result of Mashayek et al. (2024), which used
hydrostatic simulations to arrive at a relatively shallow
scaling5.

A comment on our choice to use 𝜀𝑝 in Equation (13)
is that, while using 𝑤′𝑏′ as a proxy for irreversible buoy-
ancy mixing is common, such an assumption is expected
to be valid only under special circumstances (Peltier and
Caulfield 2003; Gregg et al. 2018) which do not hold in our

5Using our notation, Mashayek et al. (2024) obtained a scaling of
𝐾𝑏 ∼ 𝐹𝑟1.7

ℎ
𝑅𝑜1.1

ℎ
, although direct comparisons with our results are

challenging since they did not normalize their values or otherwise control
for differences in topographic obstacle size and current velocity.
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domain. Likely as a result of our open domain, coupled
with the complex interaction of processes present through-
out our parameter space, 𝑤′𝑏′ is positive in most of our
simulations — opposite than what is usually expected —
indicating a transfer of available potential energy into TKE.
This fact highlights that one should exercise caution in us-
ing the (reversible) turbulent buoyancy flux as a proxy for
irreversible mixing in flow-topography interactions. With
that said, in those simulations where 𝑤′𝑏′ < 0, the scaling
in Equation (14) still holds for diffusivities calculated with
the turbulent buoyancy flux (not shown here).

5. Presence of Centrifugal-Symmetric instabilities in
the flow

In this section we turn our attention to regimes that
exhibit submesoscale structures in the wake: the vertically-
decoupled and vertically-coupled regimes, as well as the
transitional simulations in between (see Figure 2). We
note that flows similar to those in the terrain-following
regime in a similar part of parameter space have been
studied in the past, albeit without the curvature introduced
by the headland (Umlauf et al. 2015; Wenegrat et al. 2018;
Wenegrat and Thomas 2020). Given the parameter space
this regime lies in, the attached BBL may be expected to
have CSIs (Wenegrat et al. 2018, their Figure 19), but we
do not have enough resolution in our configuration to study
them in detail since they are confined within the boundary
layer in this case.

A flow is unstable to CSIs when the normalized PV is
negative. That is when

𝑞 =

®∇𝑏 ·
(
®∇× ®𝑢 + 𝑓

®̂
𝑘

)
𝑁2
∞ 𝑓

< 0. (15)

The reader is directed to previous works for further in-
formation about CSIs (Haine and Marshall 1998), and we
limit ourselves to mentioning that the linear growth rate of
such instabilities can be expressed as6

𝜔2 ≤ − 𝑓 2𝑞, (16)

and that, once active, CSIs will act to mix fluid until the PV
signal reaches marginal stability (𝑞 = 0) everywhere (Haine
and Marshall 1998). Thus, the fact that initially-negative
PV wake signatures give way to zero PV downstream in
many of our simulations is suggestive of CSI activity (see
Figure 5a,c), which is also in line with previous literature
of flow interacting with bathymetry (Dewar et al. 2015;
Molemaker et al. 2015; Gula et al. 2016; Srinivasan et al.
2019, 2021). Moreover, for values of 𝑞 present at the head-
land tip in our simulations, Equation (16) indicates that
CSIs should evolve at approximately inertial time scales

6Here we assume a uniform environment with buoyancy frequency
𝑁∞ for simplicity.

(ranging from approximately 7 hours for simulations with
𝑅𝑜ℎ = 0.08 to approximately 30 hours for 𝑅𝑜ℎ = 1.25),
reaching a fully developed state within a couple growth
periods (Chor et al. 2022). Taking into consideration un-
certainties due to a pre-existing turbulent state at separation
and due to topography-induced motion (e.g., accelerating
flows at the headland tip and wake roll-ups), this evolution
is consistent with the dynamics depicted in Figure 5.

There is also visual evidence of CSIs, and we illustrate
them with simulation 𝑅𝑜ℎ = 1.25, 𝐹𝑟ℎ = 0.2 in Figure 10,
which shows the normalized (unfiltered) PV 𝑞, KE dis-
sipation rate 𝜀𝑘 , and streamwise vorticity 𝜔𝑦 . Panels a-i
in Figure 10 are placed progressively downstream, follow-
ing the wake evolution. Each vertical cross-section can be
roughly divided into three regions: (i) the stratified inte-
rior, which can be seen at the top left (west) of each panel,
(ii) the initially-thin tilted strip resulting from the detached
BBL, which is characterized mainly by its strong negative
𝑞 signature seen in panel a, and (iii) the region of return
flow that is located between region ii and the east wall.

Focusing first on region ii, Figure 10a shows that the
headland BBL detaches as a strip of anticyclonic vorticity
and negative PV, which is associated with high dissipation
rates (panel d). Note that the BBL expands as it detaches
from the headland (seen clearly in panel j), and its thickness
is smaller than 10 meters on average in all simulations. Fur-
ther downstream, this detached BBL progressively devel-
ops into a thin braided strip (panels h-i) that progressively
increases in horizontal size. This is the result of counter-
rotating, approximately-flat motions (usually referred to
in the literature as “cells”) that grow horizontally and de-
velop small (O(5) m) overturning instabilities oriented in
the cross-stream direction (more clearly seen in the 𝜔𝑦)
which commonly accompany finite-amplitude CSIs (viz.
Dewar et al. (2015); Chor et al. (2022) for a more in-depth
discussion). As this braided structure evolves, the PV in the
strip progressively approaches marginal stability (panels b-
c and j), in a signature typical of CSIs (Haine and Marshall
1998; Taylor and Ferrari 2009; Chor et al. 2022). Note
that the overturnings are thought be secondary Kelvin-
Helmholtz instabilities, again in line with CSI dynamics
which produce them as the shear associated with the pri-
mary counter-rotating cells gets large (Taylor and Ferrari
2009; Chor et al. 2022). Kelvin-Helmholtz billows gener-
ated directly from the headland shear (i.e. without CSIs)
would be oriented in the along-stream direction; perpen-
dicular to the overturnings shown in Figure 10.

Starting at 200 m from the headland tip, regions ii (the
detached BBL strip) and iii (the return flow) blend together,
and it is challenging to accurately separate both. Never-
theless, it is apparent that region iii has some pockets of
positive PV resulting for the return flow interacting with
the bathymetry cyclonically (better seen in Figure 10b),
which gets mixed with negative PV (due to CSIs) to reach
zero-PV in most of this region. Notably, there are also
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Fig. 10. Vertical cross-sections at progressively increasing values of 𝑦 from simulation with parameters 𝑅𝑜ℎ = 1.25, 𝐹𝑟ℎ = 0.2. Panels a-c:
unfiltered normalized PV. Panels d-f: KE dissipation rates. Panels g-i: streamwise vorticity. Dashed black lines represent isopycnals. Panel j:
horizontal cross-section of unfiltered normalized PV at the same time as other panels. Solid black lines in panel j indicate locations of panels a-i.

horizontally-large (O(200) m) counter-rotating cells in re-
gion iii (better seen in Figure 10h-i) that are not generally
associated with high dissipation rates or strong negative
PV signals. We interpret them as mature CSI cells which
have already mixed PV into a marginal stability state and
which are present close to the headland tip due to the return
flow advecting them upstream.

The role of negative PV in creating CSIs can be made
clearer when comparing the results in Figure 10 with re-
sults from an identical simulation, but with opposite-sign
Coriolis frequency, as shown in Figure 11. A comparison
between both figures confirms the significant difference in
dynamics. The counter-rotating cells and braids present in
region ii of Figure 10 cross-sections are nowhere to be seen
in Figure 11. Instead, the detached BBL, which now has a
positive 𝑞 signature, approximately maintains its shape as
it travels downstream (panels a-c and j). Accordingly, KE
dissipation rates for region ii of the cyclonic case decrease
much faster as the flow travels downstream than for the an-
ticyclonic case (compare panels d-f of Figure 11 with the
same panels of Figure 10), consistent with a lack of CSIs
extracting energy from the flow. This results in a value of
the normalized dissipation rate E𝑘 for the cyclonic simu-
lation that is lower than for the anticyclonic simulation by
approximately tenfold (see Appendix A2 for a comparison
of bulk results between anticyclonic and cyclonic config-
urations). The only place we see evidence of CSIs (as in
counter-rotating cells or braids with high dissipation rate
which create overturning motions) is in pockets of negative
PV that are present in region iii as a result of the return
flow interacting anticyclonically with the headland. Cor-
respondingly, since there are fewer instances of CSI in the
cyclonic headland interaction, we see weaker mature CSI
cells in region iii.

Comparing the horizontal cross-sections (panel j) be-
tween Figures 10 and 11, the difference in wake mixing
also becomes clear, since the anticyclonic wake rapidly
adjusts to a zero-PV state, while the cyclonic wake retains
its shape and PV signal much more coherently, creating
a large coherent eddy. The dynamics just described, and
especially dynamical differences between the anticyclonic
and cyclonic headland interactions, point towards CSIs be-
ing present and active in the wake on these simulations.
They are present from the headland tip onwards for the
anticyclonic case in Figure 10, and, to a lesser extend, in
localized pockets of negative 𝑞 for the cyclonic case in Fig-
ure 11. While we illustrated both anticyclonic and cyclonic
dynamics here with simulation 𝑅𝑜ℎ = 1.25, 𝐹𝑟ℎ = 0.2, the
comparisons done in this section (as well as the criteria ex-
amination) were repeated for all our simulations, by which
we were able to confirm that CSI-producing dynamics hap-
pen in all simulations where there is an eddying wake with
a negative 𝑞 signal at the headland tip. This includes all
simulations in the vertically-decoupled eddying regime,
one of the simulations in the vertically-coupled eddying
regime, and all transitional simulations in between. Ap-
pendix A3 presents a similar analysis for a simulation in
the vertically-coupled eddying regime for comparison.

It is useful to once again check our results against
the simulation with realistic bathymetry from Gula et al.
(2016), which we estimate to have 𝑅𝑜ℎ ≈ 2 and 𝐹𝑟ℎ ≈ 0.2
(see Section 3 for details). The simulation shown in Fig-
ure 10 (𝑅𝑜ℎ = 1.25, 𝐹𝑟ℎ = 0.2) is the simulation that most
closely matches these parameters. We observe that, in
addition to the PV patterns in Figure 10j matching the
patterns seen in Figure 2 of Gula et al. (2016), the mean-
dering structures in our vertical cross sections also match
similar structures in their Figure 3g,h, but with smaller-
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Fig. 11. Same as in Figure 10, but with opposite sign 𝑓 .

scale meanders and overturning motions due to increased
resolution.

Given that CSIs can behave differently depending if they
are dominated by centrifugal modes (horizontal shear) or
symmetric modes (vertical shear) (Chor et al. 2022), it is
useful to characterize where they lie in this spectrum. One
common way to do this is by comparing the contributions
of the horizontal and vertical contributions to the total
PV. For centrifugally-dominated CSIs the vertical vorticity
term 1+ 𝑅𝑜 (i.e. the contribution from the vertical com-
ponent in Equation (15)) is expected to dominate, while
the other components dominate for symmetric modes. We
show both the total and vertical vorticity term contributions
to PV in Figure 12 for three simulations with 𝐹𝑟ℎ = 0.08. It
is clear that the vertical component dominates the PV sig-
nal, with most of the differences owning to the small-scale
𝑅𝑜 distribution (which are not present in the filtered PV by
construction), suggesting that centrifugal modes dominate
these simulations. Figure 12 also indicates that, in general
for the headlands in the parameter space range considered
here, accurately estimating 𝑅𝑜 (which has significant con-
tributions from both along- and across-stream gradients) is
key for determining the sign of the full Ertel PV.

Another important quantity for CSI energetics is the
shear production rate Π, calculated as

Π = −𝑢′
𝑖
𝑢′
𝑗
𝜕 𝑗𝑢𝑖 , (17)

where 𝑢′
𝑖

indicates a departure from the time average 𝑢𝑖 . Π
is shown in panels a-c of Figure 13 for three simulations.
Note that CSIs are expected to be growing primarily within
regions enclosed by the dashed green line (which indicates
negative average PV), however, there are significant rates of
shear production throughout most of the domain for these
simulations. In fact, while CSIs start growing after BBL
separation at the headland tip in all simulations analyzed

in this section, Figure 13 suggests that their contributions
to the total energetics may be relatively small for flows
with low Slope Burger number 𝑆ℎ (Figure 13a), while the
opposite is true for large 𝑆ℎ (Figure 13c). Note however
that while Π is negative in some regions, indicating an
upward KE cascade (likely due to eddy roll-ups), it is
mostly positive in regions where CSIs are expected, which
reflects the ability of CSIs to flux energy to smaller scales
(D’Asaro et al. 2011; Gula et al. 2016; Chor et al. 2022).

The shear production rate can also help distinguish be-
tween centrifugal and symmetric modes in CSIs. Namely,
centrifugal modes take their energy from the horizontal
component of the shears and symmetric modes from the
vertical. Thus, we show only horizontal shear contribu-
tions to Π (the sum of 𝑗 = 1,2 in the RHS of Equation
(17)) in panels d-f of Figure 13. Comparison with panels
a-c reveals that horizontal shear dominates shear produc-
tion rates everywhere. Focusing only on active-CSI re-
gions (within dashed lines), the dominance of horizontal
shear indicates that CSIs in our domain are largely of cen-
trifugal nature. The possible exception being Simulation
𝑅𝑜ℎ = 0.08, 𝑆ℎ = 2.5 (panels a, d), where the small part of
the domain where CSIs are expected seems to have both
vertical and horizontal shear contributions despite the rest
of the domain being overwhelmingly dominated by hori-
zontal shear. We note that, in general, it is expected that
higher (lower) values of 𝑆ℎ lead to more centrifugal (sym-
metric) modes in CSIs (Wenegrat et al. 2018, their Figure
19). However, in our headland configuration, low values
of 𝑆ℎ result in terrain-following flows, such that we never
get a symmetrically-dominated CSI regime in our eddying
simulations. It is nonetheless possible that such a regime
happens for lower values of the bulk headland slope 𝛼.

These results indicate that the CSIs present in our flows
tend to be centrifugal in nature. We further note that, given
this prevalence of centrifugal modes, the mixing efficiency
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Fig. 12. Comparison between different calculations of Ertel PV at 𝑧 ≈ 40 m for snapshots from three simulations with 𝐹𝑟ℎ = 0.08. Panels a-c: full
(filtered) Ertel PV calculation. Panels d-f: 1+𝑅𝑜, equivalent to the (unfiltered) vertical component of the full PV.

value of 𝛾 ≈ 0.2 we obtain in our simulations (Sections
3 and 4) is in line with previous results which indicate
that 𝛾 is expected to be in the range ≈ 0.2–0.25 in such
cases (Chor et al. 2022, their Figure 4). Finally, we again
emphasize that, although the geometry chosen in this work
includes a vertical wall at the east boundary, that wall
has a free-slip boundary condition and therefore does not
contribute to produce horizontal shear. All the drag in our
simulations comes from the headland intrusion, where the
slope is 𝛼 = 0.2 — see for example panels a-b in Figure 10
for an illustration of how the slope remains approximately
constant throughout the headland geometry.

6. Discussion and open questions

a. Comparison of energetics with previous RANS results

For context, we can compare our energetic results with
those from Gula et al. (2016). We start comparing re-
sults in Figure 8a with their KE budget. The values for
the parameters we estimate for their headland at the Great
Bahama Bank (see Section 3) indicate a headland Slope
Burger number of 𝑆ℎ ≈ 10. Approximating the total KE
sink due to dissipation in their domain as 0.5 GW (see
their Figure 5) and using the aforementioned values for
𝑉∞, 𝐿, and 𝐻 in their simulation, we get a normalized
dissipation rate of E𝑘 ≈ O(0.1), while the normalized dis-
sipation rate for an equivalent LES according to Figure
8a is E𝑘 ≈ O(1). Given that our LES resolve the small
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Panels d-f: shear production rate due to horizontal shears only. Dashed green lines indicate zero average PV.

scale structures whose effect is only parameterized in the
hydrostatic simulations of Gula et al. (2016), dissipation
results in this manuscript are likely closer to real values.
Moreover, it is worth noting that the budget done by Gula
et al. (2016) includes at least another two locations of high
dissipation in addition to the headland we are considering,
making our estimate for their dissipation for a single head-
land almost certainly an overestimation. Therefore, our
results suggest that regional hydrostatic simulations poten-
tially underestimate the dissipation (and, by extension, the
mixing) that comes from flow-bathymetry interactions by
up to an order of magnitude.

We can also compare the magnitude of 𝜀𝑘 between ver-
tical cross-sections in both studies. In our case a repre-
sentative value of 𝜀𝑘 based on Figure 10 is 10−9 W/kg

which, normalized, produces 𝜀𝑘/𝑉3
∞𝐿 ≈ 0.2. For Gula

et al. (2016) a representative value of instantaneous dissi-
pation rate lies between 10−6 and 10−5 W/kg, producing
values of 𝜀𝑘/𝑉3

∞𝐿 approximately between 0.005 and 0.05.
Consistent with our budget comparison, this result again
suggests a potential underestimate of the turbulent dissipa-
tion rate due to submesoscale flow topography interaction
in regional simulations. We further note that a simulation
with nondimensional parameters more closely matching
those of Gula et al. (2016) (i.e. 𝑅𝑜ℎ = 2, 𝐹𝑟ℎ = 0.2, 𝛼 = 0.1)
produced very similar figures and dynamics, indicating that
these results are robust. However, extra dependencies of
E𝑘 (e.g. on upstream vertical shear or time variability
of the incoming flow) may potentially modify dissipation
values.
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Accordingly, this conclusion indicates that the estimated
globally-integrated dissipation due to anticyclonic flow-
topography interactions by Gula et al. (2016) — namely
their value of 0.05 terawatts — should be revisited. Revis-
iting this estimation, however, is not straightforward since,
based on Figure 8a, they used a simulation of the most
dissipative regime as a basis for an extrapolation to all
ocean bathymetry with a slope higher than ≈ 0.02. While
they account for that fact by noting that the Gulf Stream is
highly energetic and lowering their estimated values, that
adjustment is at least partly cancelled out by their under-
estimated dissipation, making the final result uncertain.
We leave a more precise global estimation (using the trend
seen in Figure 8) for future work, as high-resolution global
simulations and bathymetry data would be needed in order
to obtain accurate values of 𝑆ℎ.

The simulations in Gula et al. (2016) used the K-Profile
Parameterization (KPP; Large et al. (1994)) as a turbulence
closure, which uses a simple expression for interior mixing
that is a function of the local gradient Richardson number
and two tunable coefficients. Therefore, it is reasonable
to expect that, if a RANS simulation using KPP were to
correctly reproduce the eddy viscosities seen in our LES,
the energetics would likely fall in line with our results.
In preliminary investigations, we see a clear organization
of viscosity values with Richardson number in an average
sense for all simulations in a manner similar to that pre-
dicted by KPP. This indicates that a KPP could, in principle,
reproduce results in this paper. There are, however, two im-
portant caveats. Firstly, we were only able to match KPP’s
prediction with averaged viscosity values when account-
ing for the fact that, at coarser resolutions, eddy viscosity
values tend to be higher (since stronger gradients are not
resolved). Furthermore, while results (after accounting for
resolution) were reasonable for the majority of our sim-
ulations, a few simulations showed very poor agreement,
indicating a dependence on the turbulence physics. This
indicates that efforts to improve KPP probably will have
to tune coefficients, likely adding a resolution dependence,
and possibly even other dependencies to the expression to
account for different physics. Secondly, while we analysed
these viscosities in an average sense, distribution around
these averages may be important, especially considering
that dissipation and mixing are emergent phenomena in
the flow which are affected by many different feedback
mechanisms.

b. CSIs in topographic wakes

We note that, while CSIs have been studied in thermal-
wind-balanced flows in nearly all previous investiga-
tions (Haine and Marshall 1998; Holton 2004; Thomas
and Taylor 2010), the flow in our simulations is mostly
ageostrophic and not in thermal wind balance. This is ex-
pected to be a generic feature of topographic wakes due

to the adverse pressure gradient associated with flow sep-
aration. Although work explicitly extending CSI theory
beyond thermal wind balance exists, it is focused on ex-
panding on geostrophic balance, rather than not requir-
ing it. Assuming cyclogeostrophic balance as a starting
point (i.e. geostrophic balance with an additional curva-
ture term), Buckingham et al. (2021) found that the insta-
bility criterion and growth rate are modified by an extra
curvature term. With the addition of this curvature term,
it is expected that bulk anticyclonic Rossby numbers 𝑅𝑜𝑏
in marginally-stable cyclogeostrophic flows be limited to
𝑅𝑜𝑏 > −1/2, which we verified to not be true in our sim-
ulations, indicating that curvature effects are not relevant
here and our flows are not in cyclogeostrophic balance.

It is possible, however, to derive the criterion for cen-
trifugal instabilities (i.e. CSI in flows without any vertical
shear; sometimes called inertial instabilities) without ex-
plicitly requiring geostrophic balance. Namely one can
follow the parcel argument by Kloosterziel and van Heijst
(1991) and, instead of requiring a pressure gradient force
to balance the background flow, simply require a general
unspecified force to balance the background state. The
only requirement is that such balancing force not be sig-
nificantly affected by individual parcel displacements. At
the end of the derivation, after assuming small curvature
effects, one recovers the criterion

𝑓 (𝜁 + 𝑓 ) < 0, (18)

which, assuming 𝑁2
∞ > 0, is equivalent to Equation (15)

for flows without significant vertical shear contributions to
PV (which we showed to be true for our simulations in Sec-
tion 5). Thus, this suggests that, at least for the centrifugal
modes of CSIs, geostrophic balance is not strictly neces-
sary as long as another force balances the background flow.
For the purposes of this work, we posit that this force may
be the Reynolds stress divergence (i.e. turbulence), but
leave it for future work to investigate this more thoroughly.

Finally, we note that narrow strips of negative PV are
very different from the configuration considered in most
CSI investigations, which tend to assume a wide environ-
ment with negative 𝑞, such that in general the scale of the
counter-rotating cells is much smaller than their available
space to grow (Haine and Marshall 1998; Taylor and Fer-
rari 2009; Thomas et al. 2013; Wienkers et al. 2021). In
the case of a thin negative PV strip, such as investigated in
this section, the scale of the initial cells can overlap with
that of the PV strip and possibly even of the secondary
Kelvin-Helmholtz instabilities7, which seems to happen
in our simulations. In these cases it is an open problem
whether growth rates and other dynamical aspects of CSIs

7While for an inviscid fluid the most unstable mode for CSI cells is
vanishingly small (Griffiths 2003), the presence of viscosity arrests this
process and imposes a finite scale for the fastest growing mode.
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are modified in comparison to more traditional configura-
tions.

7. Conclusions

Due to computational and measurement challenges, the
turbulent dynamics of flow-bathymetry interactions are an
under-explored topic in physical oceanography. Impor-
tantly for this work, there are large uncertainties about how
much kinetic energy is dissipated and how much buoy-
ancy is mixed in these locations, with previous work sug-
gesting that the integrated value of these quantities may
be significant for global dynamics (Ledwell et al. 2000;
Nikurashin and Ferrari 2011; Gula et al. 2016; Zemskova
and Grisouard 2021; Evans et al. 2022). Furthermore,
there is evidence that these flows generate submesoscale
structures (Srinivasan et al. 2019; Perfect et al. 2020b;
Srinivasan et al. 2021; Nagai et al. 2021), with unclear
implications for flow properties that depend on small-scale
turbulence.

Past investigations on the topic largely parameterized
the effects of the small scales using RANS models, which
do not reliably capture dissipation and mixing rates (Pope
2000). Given the importance of small-scale dynamics to
the energy cascade and, consequently, the dissipation and
mixing rates in these flows (Chor et al. 2022), we used LES
to investigate the aforementioned issues, thus resolving
both the submesoscale and turbulent flow structures. We
ran a series of simulations where a barotropic, constantly-
stratified flow interacts with an idealized headland. In these
simulations we systematically change the rotation rate and
stratification in order to reach different parts of the pa-
rameter space, spanning four different dynamical regimes.
These regimes range from terrain-following flows, where
virtually all relevant flow dynamics are concentrated in a
relatively-thin bottom boundary layer (BBL) attached to the
headland, to eddying regimes where most of the interest-
ing dynamics happen at the wake (Figures 3–6). We found
that the Slope Burger number 𝑆ℎ is a good predictor of
how much turbulence (and hence mixing and dissipation)
is concentrated close to the headland, versus downstream
from it, with simulations with high 𝑆ℎ being progressively
dominated by downstream wake dynamics (Figures 6 and
7).

In analyzing bulk statistics, we find that the normalized
integrated dissipation rate E𝑘 organizes as

E𝑘 ≈ 0.1𝑆ℎ, (19)

and similarly for the normalized integrated buoyancy mix-
ing rate (namely E𝑝 ≈ 0.02𝑆ℎ). The organization is re-
markably robust, especially considering the many path-
ways for energy transfer that are possible within such a
wide range of the parameter space. Although the authors
cannot fully explain the dynamical reason for this organi-
zation (which is left for future work), it is hypothesized to

follow, at least in part, from the form drag, which extracts
energy from the barotropic flow at rates that also scale
linearly with 𝑆ℎ for most of the parameter space.

It is also worth noting that the organization of E𝑘 and
E𝑝 persisted in tests where we changed several aspects
of the simulations such as 𝑉∞, boundary conditions, and
even bathymetry shape. This gives us confidence in the
normalization of KE dissipation and buoyancy mixing
rates by 𝑉3

∞/𝐿 and allows us to compare our results with
those from other simulations on much larger scales. We
performed one such comparison with results presented
in Gula et al. (2016) for a location in the Gulf Stream,
from which we conclude the dynamics of realistic head-
lands are well-captured by our idealized geometry. Addi-
tionally, by analyzing both volume-integrated results and
snapshots, we conclude that RANS models may underes-
timate dissipation rates from flow-topography interaction
by as much as an order of magnitude. Moreover, we also
found that the normalized buoyancy diffusivity K𝑏 scales
asK𝑏 ∼ 𝑅𝑜ℎ𝐹𝑟ℎ in our simulations (Figure 9b). This result
is shallower than previous scalings (Perfect et al. 2020a;
Mashayek et al. 2024), and suggests a smaller contribution
from small-scale topography (which tends to have high
Rossby and Froude numbers) to watermass mixing.

We then focused our attention on the regimes that display
submesoscale features in the wake: namely the vertically-
decoupled eddying, vertically-coupled eddying regimes,
and the simulations in between them. By repeating the
analyses done in Section 5 for all simulations, we identify
signs of CSIs (which elevate the dissipation rate in compar-
ison to a similar simulation but without CSIs; see Section
5 and Appendix A3) for all simulations in those regimes
that have high enough 𝑅𝑜ℎ (therefore reaching sufficiently
negative 𝑅𝑜 values in the wake to have a negative PV sig-
nal). Although CSIs in our domain derive their energy
mostly from horizontal shear production (being similar to
centrifugal instabilities), they exist in an ageostrophic flow
and, as such, differ from the traditional picture of CSIs as
emerging in thermal-wind-balanced flow (Haine and Mar-
shall 1998).

Furthermore, while theory and measurements in the up-
per ocean indicate that submesoscales modify energetics
when compared to more traditional upper ocean turbu-
lence (Thomas and Taylor 2010; Taylor and Ferrari 2010;
D’Asaro et al. 2011; Thomas et al. 2013, 2016), the excel-
lent organization of dissipation and mixing with 𝑆ℎ across
different regimes (some with, others without CSIs) sug-
gests otherwise for topographic wakes. Thus, while the
route to turbulence seems to be important in setting the en-
ergetics of upper ocean flows, our results in Figures 8a and
9a suggest that, given a barotropic flow and an obstacle in
the ocean bottom, the small scale dynamics adjust follow-
ing a general principle. One important difference between
our configuration and upper ocean CSI is that, despite the
controlling role of surface fluxes, the latter sources their
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energy from the balanced upper ocean flow (e.g. Taylor
and Ferrari (2010)). In our simulations despite the route
to turbulence changing from one regime to the other, the
energy source is always in some sense initially set by the
balanced inflow interacting with the topography, hence the
cross-regime organization of results. Another possible ex-
planation for this difference in energetics behavior between
upper ocean CSI and bottom CSIs is their type and the char-
acteristics of the background flow. Namely, CSI studies in
the upper ocean have mostly investigated symmetrically-
dominated CSIs (symmetric instabilities) in a flow that is
approximately in thermal wind balance. For CSIs in our
headland wakes the modes are mostly centrifugal, and the
flow is ageostrophic.

Finally, we opted for an idealized headland as the ge-
ometry of choice for our investigation given the size lim-
itations of the LES technique. While we are aware that
such a shape cannot possibly capture the detailed dynam-
ics that emerge when real ocean flows interact with com-
plex, real bathymetry, we hope that many of the high-level
physics carry over to realistic scenarios. This seems to
be true given our comparison with simulations from Gula
et al. (2016) and with preliminary LES using different
bathymetry shapes, and there are ongoing efforts by the
authors to verify this hypothesis more completely in future
work.
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APPENDIX

A1. Grid resolution analysis

Khani (2018) compared LES of idealized stratified tur-
bulent flows against direct numerical simulations and found
that LES produced correct results when their grid spac-
ing was approximately equal or smaller than the Ozmidov
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Fig. A1. Δ𝑧/𝐿𝑂 as a function of 𝑆ℎ . Results presented in this work
are obtained with Δ𝑧 ≈ 0.6 m (black points). The dashed black line
shows Δ𝑧/𝐿0 = 1, for reference.

length scale (Khani and Waite 2014; Khani 2018)

𝐿𝑂 = 2𝜋

(
⟨𝜀𝑘⟩𝜀

𝑁3
0

)1/2

, (A1)

where ⟨𝜀𝑘⟩𝜀 is a time- and volume-average of 𝜀𝑘 over tur-
bulent regions of the flow (which we implement here as
an average over regions where 𝜀𝑘 > 10−10 m2/s3). Thus
we compare our grid spacing with the Ozmidov length,
plotting the quantity Δ𝑧/𝐿𝑂 as a function of 𝑆ℎ in Fig-
ure A1 for all points in the parameter space used in this
work. Note that, in order to also illustrate convergence, we
ran extra simulations that are exactly the same as the ones
whose results are presented in main text, except for the
spacings Δ𝑥, Δ𝑦 and Δ𝑧, which were increased by factors
of 2 while keeping the ratios Δ𝑥/Δ𝑧 = Δ𝑦/Δ𝑧 constant. It
is clear that there is a general trend for simulations with
lower 𝑆ℎ to be more well-resolved, owing primarily to the
lower stratification, with simulations being better-resolved
with decreasing Δ𝑧, as expected. It is also clear that all
the simulations used to produce the results in this paper
(black points) meet or exceed the threshold identified by
Khani (2018) and therefore can be considered converged.
Moreover, we note that, that even with the half-resolution
simulations (Δ𝑧 ≈ 1.2 m; gray points), all results in this
work remain qualitatively the same, with only minor quan-
titative differences, further indicating that our simulations
are well-converged.

A2. Bulk results for cyclonic configuration

In this appendix we analyze bulk energetic results for
the cyclonic configuration (i.e. the same simulations as
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Fig. A2. Normalized volume-integrated, time-averaged quantities
as a function of Slope Burger number 𝑆ℎ . Panels a: KE dissipation
dissipation rates. Panel b: buoyancy mixing rates. Blue diamonds
are results for the anticyclonic simulations (same data as plotted in
Figure 8a,b) and red diamonds are results for the cyclonic simulations,
which have the exact same configuration as the anticyclonic ones, but
with opposite-sign Coriolis frequency.

depicted in Figure 2 but with negative-sign Coriolis fre-
quency) in comparison with their anticyclonic counter-
parts. We start with the normalized integrated KE dis-
sipation rate E𝑘 , which is shown in Figure A2a for the
anticyclonic (blue diamonds) and cyclonic (red crosses)
simulations. In accordance with the comparison made in
Section 5, we see that, in general, cyclonic simulations tend
to have lower KE dissipation rates. We also see an organi-
zation of results into a scaling close to ∼ 𝑆

1/2
ℎ

(red dashed
line); shallower than the relationship observed for the an-
ticyclonic results of 𝑆ℎ (blue dashed line). In Figure A2b
we show results for the normalized integrated buoyancy
mixing rate E𝑝 for both configurations. Similarly to the
dissipation results, buoyancy mixing rates seem to organize
in a shallower scaling of 𝑆1/2

𝐻
for the cyclonic simulations.

With the exception of simulations with 𝑆ℎ < 0.2, E𝑝 values
also seem to be lower for cyclonic simulations, in compar-
ison with anticyclonic ones.

Thus, while dissipation and mixing rates seem to also
follow a general principle for cyclonic headland flows, they
exhibit a shallower scaling with 𝑆ℎ and tend to dissipate
and mix less than their anticyclonic counterparts, with the
difference being larger for higher values of 𝑆ℎ. Note that
the fact that cyclonic headlands also exhibit a consistent
scaling across regimes is in line with our hypothesis that
such an organization comes from the flow having the same

source of energy in all simulations. Namely, the energy
source is always initially set by the balanced inflow inter-
acting with the topography (see Section 7).

However, the fact that the discrepancy between cyclonic
and anticyclonic headland encounters is larger for larger
𝑆ℎ differs from results by Srinivasan et al. (2021) for
seamounts. Namely, Srinivasan et al. (2021) observed
that, due to the increasing predominance of vertical shear
as a mixing mechanism as rotation is decreased, flows with
higher Rossby number (and thus higher 𝑆ℎ) dissipate KE
at similar rates in both cyclonic and anticyclonic seamount
wake eddies. In short, findings from seamount simulations
imply that the higher the Rossby and Slope Burger num-
bers, the more symmetric the energetics should be between
cyclonic and anticyclonic, which, as Figure A2 shows, does
not happen in headlands.

This discrepancy can be explained by the fact that,
while high Slope Burger numbers correlate with vertically-
decoupled flows in both anticyclonic headland interac-
tions and seamounts, this is not true of cyclonic head-
lands. We illustrate this in Figure A3 with simulation
𝑅𝑜ℎ = 1, 𝐹𝑟ℎ = 0.08, which is our simulation with highest
𝑆ℎ and largest discrepancy between cyclonic and anticy-
clonic flow dissipations. It is clear from the figure that cy-
clonic flows remain vertically coherent after detachment,
even as their anticyclonic counterparts decouple vertically
(Figure A3a,c). This translates into significantly lower ver-
tical shear rates for cyclonic headland interactions (Figure
A3b,d). The different scaling seen in cyclonic headlands
is qualitatively in agreement with this fact, given that it
suggests that the important underlying processes are dif-
ferent between the cyclonic and anticyclonic cases. This
further suggests that, in seamounts, it may be the anticy-
clonic side of the wake that causes vertical decoupling of
lee eddies. Given the focus of this manuscript on anticy-
clonic headland wakes, we leave further investigation of
this phenomenon for future studies.

A3. Centrifugal-symmetric instabilities in vertically-
coupled eddying simulation

For a more complete picture of the parameter space
and in order to compare with results presented in Section
5, we show snapshots of normalized Ertel PV, KE dis-
sipation rates, and streamwise vorticity for a simulation
in the vertically-coupled eddying regime and its cyclonic
counterpart. Results for the anticyclonic vertically-coupled
headland are presented in Figures A4, where one can see an
evolution that is similar to the vertically-decoupled regime
(Figure 10). Namely, there are overturning circulations
that coincide with patches of negative PV as well as high
KE dissipation rates (particularly visible at 80 meters; pan-
els a, d, and g). As the flow progresses downstream the
negative PV signal is mixed away and the dissipation rates
accordingly decrease. The main difference between results



21

0

20

40

60

80
z [

m
]

a b

0 250 500 750 1000 1250 1500 1750
y [m]

0

20

40

60

80

z [
m

]

c

0 250 500 750 1000 1250 1500 1750
y [m]

d

0.010 0.005 0.000 0.005 0.010
v [m/s]

0.003 0.002 0.001 0.000 0.001 0.002 0.003
u/ z [1/s]
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Fig. A4. Same as in Figure 10, but for simulation with 𝑅𝑜ℎ = 𝐹𝑟ℎ = 0.2.

in Figures A4 and 10 is that the simulation in the vertically-
coupled eddying regime has a weaker negative PV signal
since it has a higher Coriolis frequency 𝑓 , and therefore
generates a 𝑅𝑜 signal that is smaller in magnitude. As
a result, the CSIs are able to mix away that negative PV
signal faster, despite having a slower growth rate (this can
also be seen in panel j).

Figure A5 shows a similar progression, but for a cyclonic
headland in a vertically-coupled eddying regime. As is
the case with the simulations in the vertically-decoupled
eddying regime, the cyclonic interaction has much lower
dissipation rates since the flow produces mainly cyclonic
PV, and as a result is therefore mostly stable to CSIs. The
small portion of the domain that has a negative normalized
PV signal (namely the return flow very close to the head-
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land) does have elevated dissipation and has overturning
motions typical of CSI activity.
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